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In a previous paper we introduced a highly abstract framework within which the 
theory of manuals initiated by Foulis and Randall is to be developed. The 
framework enabled us in a subsequent paper to quantize the notion of a set. 
Following these lines, this paper is devoted to quantizing algebraic groups viewed 
from Grothendieck's funetorial standpoint. 

VISTA 

In a previous paper (Nishimura, 1995b) we quantized the notion of a 
set with respect to a manual ~ of Boolean locales. There, quantized sets 
were called empirical sets, which are, roughly speaking, assignments to each 
Boolean locale X in ~2E of a Boolean valued set with respect to the complete 
Boolean algebra ~(X)  corresponding to X. By way of example, the Bool- 
eanized sets of real numbers over Boolean locales X in ~ lump together to 
form the empirical set of real numbers over ~,9~. 

Set theory is the foundation of mathematics in the sense that every branch 
of mathematics, ranging from algebraic geometry to functional analysis, can 
be developed in principle within such a formal framework of  axiomatic set 
theory as Zermelo-Fraenkel set theory with the axiom of  choice. Now that 
the notion of a set is quantized, we are naturally inclined to consider quantiza- 
tions of other mathematical structures, since "lower structures determine 
upper structures", as Engels put it. This paper is devoted to quantizing 
algebraic groups, though our exposition is intentionally oriented toward the 
general theory of  (first) quantization. Our theory of  quantized algebraic groups 
enables the lump of Booleanized real general linear groups of degree n for 
all the Boolean locales X in ~ to get its due conceptual status. 
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Linear groups such as GLn and SLn can be seen both as Lie groups and 
as algebraic groups. Lie groups are smooth manifolds endowed with a group 
structure definable by smooth functions, while affine algebraic groups are 
algebraic sets endowed with a group structure definable by polynomial func- 
tions. In spite of their vast technical discrepancies, the theory of Lie groups 
and that of algebraic groups enjoy immense similarity, for which the reader 
is referred, e.g., to Onishchik and Vinberg (1990). This paper is concerned 
with algebraic groups. 

Algebraic sets can be approached from two distinct but complementary 
viewpoints. Geometrically, they are sets in affine spaces definable by families 
of polynomial functions. On the other hand, Grothendieck and others have 
espoused and expanded a functorial viewpoint that they are functors assigning 
sets to rings (more generally, to k-algebras for some fixed ring k). For a good 
introduction to the functorial treatment of algebraic geometry and algebraic 
groups in particular, the reader is referred to Demazure and Gabriel (1980). 
Waterhouse's (1979) monograph is also readable. Our treatment of algebraic 
groups in this paper is persistently functorial. 

Interestingly enough, logical quantization should be preceded by Bool- 
eanization. Therefore, after fixing our terminology and notation of category 
theory in Section 0, we devote Section 1 to Booleanizing category theory. 
We suppose that Booleanization is now a common machinery in the arsenal 
of every working mathematician, for which the reader is referred, by way of 
example, to Nishimura (1984, 1992) and Takeuti (1978). Therefore, instead 
of producing the details of Booleanized proofs of Booleanized versions of 
well-known results of category theory in Section 1, we are content to produce 
Section 4, as an appendix, on what set theory we have in mind and how to 
interpret it. After discussing the relationship between two Booleanizations 
over possibly distinct complete Boolean algebras in Section 2, we discuss 
logical quantization of group-functors and some related concepts in Section 
3. A category-theoretic viewpoint is conspicuous throughout the paper. 

Conversance with our previous papers (Nishimura, 1993, 1995a,b) is 
highly helpful, but we are not necessarily faithful to our previous notation 
or terminology. A ring always means a commutative ring with unity in this 
paper, so that a homomorphism of rings is naturally required to preserve 
unities. 

0. CATEGORY THEORY 

The notion of a category is a generalization of that of a monoid on the 
one hand and a generalization of that of a poset on the other. Formally 
speaking, a category C is a 6-tuple (Ob C, Mor C, dc, rc, idc, Oc), where: 
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(0.1) Ob C is a set whose elements are called objects. 
(0.2) Mor C is a set whose elements are called morphisms. 
(0.3) dc and rc are functions from Mor C to Ob C. 
(0.4) idc is a function from Ob C to Mor C such that dc(idc(x)) = 

rc(idc(x)) = x for any x E Ob C. 
(0.5) o c is a function from 

M o r C  •  = {(g,f)  E M o r C •  
= re(f)} 

to Mor C (the value of Oc at (g, f )  is usually denoted by g o c 
f )  such that dc(g o e f )  = dc(f)  and rc(g Ocf)  = re(g) for any 
( g , f )  e M o r C  •  

(0.6) o c is required to satisfy a certain kind of associative law, and 
idc(x) is required to play the role of two-sided identity for each 
x ~ O b C .  

We assume that the reader is well conversant with the fundamentals of 
category theory, for which the standard reference is, beyond all doubt, 
MacLane (1971). In particular, the reader should feel at home with such 
locutions as a funetor, a natural transformation, the opposite category C ~ of 
a category C, a limit, a colimit, etc. 

To dodge the famous paradoxes of set theory or to paper them over, the 
usage of a universe U is a common practice in category theory, though the 
exact definition of a universe varies from one author to another in small 
details. For an exact definition of a universe, the reader is referred, e.g., to 
MacLane (1971, Chapter I, w In this paper we use two universes U, V 
with U ~ V. A set of U (of V, resp.) is called smallo (smalll, resp.). A category 
C is called smalli if the set Mor C is smalli (i = 0, 1). A category C is said 
to be smalli-complete (smalli-cocomplete, resp.) if  all small; diagrams have 
limits (colimits, resp.) in C (i = 0, 1). 

It is well known that such equationally definable algebraic systems as 
monoids, groups, and rings are definable within any category C with finite 
products (a terminal object should be regarded as a product of the empty 
family of objects) by using diagrams, for which the reader is referred to 
MacLane (1971, Chapter III, w We denote by Mon(C), Grp(C) and Rng(C) 
the categories of monoids, groups, and tings in C, respectively. If F: C --~ 
D is a functor preserving finite limits, then it naturally induces functors FMo,: 
Mon(C) ---> Mon(D), FG~: Grp(C) ---> Grp(D), and FRog: Rng(C) --> Rng(D). 
If  R is an object of Rng(C), then we can consider the categories AlgR(C) 
and LieR(C) of R-algebras and Lie algebras over R within the category C. 
Let i be 0 or 1. We denote by Ensi the category of small/sets and functions 
among them, which obviously has finite products. Then Mon(Ensi), 
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Grp(Ensi), and Rng(Ens;) denote the categories of smalli monoids, small/ 
groups, and small; rings in the usual sense, respectively. If R is a small; ring, 
then AlgROEns/) and LieR(Ens;) denote the categories of small/R-algebras 
and smalli Lie algebras over R in the usual sense, respectively. 

We denote by Bool the category of complete Boolean algebras whose 
underlying sets are smallo. Its morphisms are all complete Boolean homomor- 
phisms among such complete Boolean algebras. We denote by BLoc the 
opposite category Booi ~ of the category Bool. The objects of BLoc are called 
Boolean locales and are denoted by X, Y, Z . . . . .  Its morphisms are denoted 
by f, g, h . . . . .  If a Boolean locale X is to be put down as an object of Bool, 
then it is denoted by ~(X). Similarly, the morphism of Bool corresponding 
to f E Mor BLoc is denoted by ~(f). Given a Boolean locale X and p 
~(X), Xp denotes the Boolean locale such that ~(Xp) = {q e ~(X) lq  
p}. The canonical coproduct of two Boolean locales X and Y is denoted by 
X ~ Y, for which ~(X G Y) = ~(X) • ~(Y). 

An orthogonal category is a category endowed with a class of diagrams 
(called orthogonal sum diagrams) satisfying mild constraints. For the formal 
clef'tuition of an orthogonal category the reader is referred to Nishimura 
(1995a), but one important remark with regard to our usage of two kinds of 
smallness is in order. We will consider only small0 orthogonal sum diagrams 
in this paper. This means, by way of example, that condition (2.1 l) of that 
paper is now to read as follows: 

(2.11)0 For any small0 family {Xx}x~A of objects in ,~ there exist an 
object Y in ~ and a family {fx}x~A of morphisms fx: Xx --> 

Y in ~ such that the diagram {Xx ~ Y}XeA lies in 0#~. 

The due modifications for the other conditions of the definition of an orthogo- 
nal category which follow on our adherence to smallnesso are safely entrusted 
to the reader. The motivating model of an orthogonal category is the opposite 
category of the category of small0 complex Hilbert spaces and contractive 
linear transformations among them, in which the class of orthogonal sum 
diagrams is the categorical incarnation of the familiar notion of the orthogonal 
sum of a smallo family of small0 complex Hilbert spaces, and which was 
investigated in detail by Nishimura (1994) before the formal introduction of 
the notion of an orthogonal category. Another leading example of an orthogo- 
nal category is the category BLoc, in which the class of orthogonal sum 
diagrams is that of smallo coproduct diagrams. 

Orthogonal categories provide an abstract vehicle upon which the formal 
theory of manuals initiated by Foulis and Randall (1972; Randall and Foulis, 
1973) is to be developed. In particular, the theory of manuals upon the 
orthogonal category BLoc studied in detail by Nishimura (1993) was the 
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starting point of our long odyssey toward the formal theory of logical quantiza- 
tion. Formally, a manual in an orthogonal category C is a small0 subcategory 

of  the orthogonal category C satisfying certain mild constraints, under 
which the logic of s~ is guaranteed to be an orthomodular poset. In this 
paper a manual of Boolean locales always means a completely coherent rich 
manual in the orthogonal category BLoc. 

1. BOOLEANIZATION 

Let X be an arbitrary Boolean locale, which shall be fixed throughout 
this section. We often denote ~(X)  by B. A family {Px}x~A of  nonzero 
elements of B is called a partition of unity of B if it satisfies the following 
conditions: 

(1A) supx~Ap~ = 1B, where 1B is the unit of  B. 
(1.2) Px ^ Px' = 0B for any k, k'  ~ ^ with ~ 4= h',  where 0B is the 

zero of B. 

A B-valued set is a pair (~ [[. = .~x ~) of  a set and a function ~. = -]]x~: OR 
• OR --> B abiding by the following conditions: 

(1.3) [ [ x=y~x  ~ = ~ y = x B x  ~ 
(1.4) l x = y ~ x  ~ A ~ y  = Z~x ~ - - ~ x = z ~ x  ~ 

for all x, y, z e OR. We will often write Ix = Y]x, [Ix = y~e, or Ix = y~ for 
Ix = Y~x, unless confusion may arise. 

Given a B-valued set (OR, [[-= .~), a function c~: OR --) B is called a 
singleton if it satisfies the following conditions: 

(1.5) c~(x) ̂  ]Ix -- y~ <-- offy) 
(1.6) oL(x) A offy) <-- [IX = yl] 

for all x, y ~ OR. It is easy to see that any x E OR gives rise to a singleton 
{x} assigning, to each y e OR, [Ix = y~ E B. The B-valued set (OR, [[. = "D 
is called an X-set if  every singleton is of the form {x} for a unique x e OR. 

Let (~ [- = -  ~) be an X-set. For each x E OR and each p E B the unique 
element of  OR corresponding to the singleton y E OR ~ IX = y~ A p is denoted 
by xrp. Unless confusion may arise, the underlying set OR of  the X-set (OR, 
[.  = -~) is simply called an X-set without making the function [[. =-]]: OR • 
OR - )  B explicit. A subset T" of OR can naturally be regarded as a B-valued 
set with respect to the restriction of  the function [- = -  ]]: OR X OR ---> B to T" 
• T'. If this B-valued set T" happens to be an X-set, then it is called an X- 
subset of OR. For e a c h p  ~ B, the set {x ~ ORI[x = x] ~ p} can naturally 
be regarded as an Xp-set, denoted by GRIp. The X-set OR is said to be smalli 
if its underlying set is smalli (i = 0, 1). An element x E OR is called total if  
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~x = x] = lB. A family {Xx}• of elements of OR is called an X-basis of 
the X-set OR if it satisfies the following conditions: 

(1.7) ~x• =xx~ = 1 B f o r a n y h  ~ A. 
(1.8) ~xx = xx,]] = 0B for any )t,/t '  e A with h r h' .  
(1.9) ~y = y] = supxEAI[y = XX] for any element y ~ OR. 

The X-set OR is said to be X-finite if there exists a partition {p~}~ of unity 
of B such that OR[-p~ is of a finite Xp~-basis for each ~ e E. 

Given X-sets OR and ~ ,  an X-function from OR to ~ is a f u n c t i o n / /  
from the set OR to the set ~ abiding by the following conditions: 

(1.10) Ix = y]]at < [[ _~(x) = /~y)~V 
(1.11) [/~(x) = / f (x) ]  v --< ~x = xl] ~ 

for all x, y e ~ By substituting x for y in (1.10) and taking (1.11) into 
account, we have 

(1.12) [Ix = x] at = ~/E(x) =/g(x)]] v 

for all x e OR For each p e B, the X-func t ionfna tura l ly  induces an X.- 
�9 - -  Y 

function from the Xfse t  OR[-p to the Xp-set ~[-~o, denoted by f [-p. The X- 
func t ion / f  is said to be smalli if OR and ~ are small/(i = 0, 1). 

It is well known that the category BEnsi(X) of small/X-sets and small/ 
X-functions is a Boolean topos in which the axiom of choice holds (i = 0, 
1). The canonical embedding of BEns0(X) into BEns1(X) is a logical morph- 
ism. The category BEnst(X) is smalll-complete and small~-cocomplete, and 
the category BEnso(X) is closed under small0 limits and small0 colimits in 
BEnsl(X ). Given X-sets ~ and ~ the underlying set of their canonical 
product OR • xT" is 

{(x, y) e OR • ~l~x = x~ ~ = ~y = y]V} 

The category Rng(BEns0(X)) is denoted by BRng(X). Given an object 
of BRng(X), the category Alg~(BEnso(X)) is denoted by BAIga(X). 

An X-category % is a 6-tuple (Ob ~,  Mor %, d~, re, ida, o~), where: 

(1.13) Ob �9 and Mor % are X-sets�9 
(1.14) d~ and r~ are X-functions from Mor ~ to Ob ~.  
(1.15) id~ is an X-function from Ob % to Mor% such that ~x = y]Ob~ 

= [[id~(x) = id,~(y)]] M~ for all x, y E Ob ~.  
(1.16) o~ is an X-function from 

Mor% • Ob~ M o r ~  = {(g,f)  ~ Morq~ • Mor ~ ld~(g)  
= r~(f) ] 

to Mor ~g, where we note that Mor ~ • ob ~ Mor �9 is an X- 
subset of Mor % • x Mor ~ .  
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(1.17) The 6-tuple (Ob ~ ,  Mor ~,  d~, r~, ida, o~) is a category in the 
usual sense. 

Unless confusion may arise, the subscript ~ in d~, r~, ida, and o~ is usually 
omitted. We usually denote the value of (g, f )  under o by g o f  rather than 
O(g, f) .  Of  course, elements of Ob ~ are called objects of ~ and elements 
of Mot  c~ are called morphisms of ~ .  Total elements of Ob c~ are called total 
objects of q~, and total elements of Mot ~ are called total morphisms of q~. 
Given x, y e Ob ~ ,  the totality of morphisms f :  xFp --~ yFp for all p e B 
with p ----- [Ix = x] ^ [[y = y] is denoted by ~x(X, y). The X-category ~ is 
said to be smaIli if the X-set Ob �9 is smalli (i = 0, 1). The X-category 
is said be X-finite if the X-set Mot  ~ is X-finite. The opposite X-category 
of the X-category c6 is defined as expected, and is denoted by ~op. Given 
p ~ B, the full subcategory of the category c~ whose objects are all x ~ Ob 
% with Hx = x] ----- p can naturally be rated as an Xp-category and is denoted 
by ~ p .  Given p E B, the full subcategory of  the category ~ whose objects 
are all x E Ob q~ with [Ix = x]l = p is called the p-slice of the X-category 
% and is denoted by q~[p]. An X-category ~ = (Ob ~ ,  Mor ~ ,  d~, r~, ida, 
o~) is said to be an X-subcategory of the X-category % = (Ob ~ ,  Mor q~, 
d~, r~, ida, o~) if the underlying category of  ~ is a subcategory of  that of 
%, and if the X-sets Ob ~ and Mor ~ are X-subsets of Ob q~ and Mor 
%, respectively. 

Now an example of  an X-category will be instructive. 

Example 1.1. Let i be 0 or 1. A smalli partial X-set is an ordered pair 
(p, OR) of an element p of B and a small/Xp-set oR. A smalli partial X- 
function is an ordered pair (p , /d )  of an element p of B and a smalli Xp- 
func t ion / .  The totality of  small/partial X-sets can be regarded as an X-set 
by defining ~(p, OR) = (q, ~ ) ]  to be 

(1.18) ~(p, OR) = (q, ~ = sup{r E Bl r  -< p ^ q and OR[r = ~ [ r }  

Two small/partial X-sets (p, OR) and (p, 7 )  whose f'trst components happen 
to be the same p are identified provided that ~(p, ~ = (p, W)] = p. The 
totality of smalli partial X-functions can similarly be rated as an X-set by 
defining [[(p,/e) __ ( q , ~ ) ]  to be 

(1.19) ~(p, /~)= (q,g)]]  = sup{r E B l r  < p  ^ q and /~ - r  = ~ [ r } .  

Two small/partial X-functions (p, fie) and (p, ~ )  whose first components 
happen to be the same p are identified provided that [[(p,/~) = (p, ~ ) ]  = 
p. The totality of  small/partial X-sets and small/partial X-functions naturally 
forms an X-category ~%mdi(X). It is easy to see that for each p E B, the 
category ~%/~ai(X)[p] is equivalent to the category BEnsi(Xp). �9 
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An X-functor from an X-category % to an X-category ~ is a functor 
from the underlying category q~ to the underlying category ~ abiding by the 
following condition: 

(1.20) The assignmentf  ~ Mor % ~ ~ ( f )  E Mor ~ is an X-function. 

Proposition 1.2. An X-functor ~ from an X-category % to an X-category 
satisfies the following condition: 

(1.21) The assignment x ~ Ob q~ ~ ~(x) ~ Ob ~ is an X-function. 

Proof. For any x, y e Ob %, we have 

[Ix = y]]Ob �9 = lid(x) = id(y)]] M~ ~ 

<_ [o~(id(x)) = ~(id(y))]  M~ 

= [[id(~(x)) = id(~(y))]  M~ 

= [~(x) = ~(y)]l ~ �9 

An X-functor ~:  ~ --> ~ naturally gives rise to a functor ~[p] :  q~[p] 
~ [ p ]  and an Xp-functor ~ rp :  ~ r p  --~ ~ r p  for everyp  ~ B. A contravariant 

X-functor from an X-category % to an X-category 5~ is an X-functor from 
the X-category %op to the X-category ~ .  

Given an X-category off and an X-category ~ ,  an X-diagram in % of  
type off is an X-functor ~ from off to q~. More generally, a partial X-diagram 
in an X-category ~ is an ordered pair of (p, ~ )  of p e B and an Xp-diagram 

in %~p, in which the type of  the Xp-diagram ~ is called the type of  the 
partial X-diagram. An X-diagram in an X-category ~ is said to be X-finite, 
smallo or smalll if its type is so accordingly. Similarly, a partial X-diagram 
(p, ~ )  is said to be X-finite, smallo or smalll if the type of the Xv-diagram 

is Xp-finite, small0 or small1 accordingly. 

Example 1.3. Let ~ and ~ be X-categories and x an object of ~ .  Let 
p = [Ix = x]]. Then the assignments y ~ Ob q~]p ~ x ~ y  = y] ~ Ob ~ and 
f ~ Mor ~ ] p , ~  id(x)[~y = y~ ~ Mor ~ constitute an Xp-functor to be 
denoted by (x)~. �9 

Given X-categories ~ and ~ ,  a natural X-transformation from an X- 
functor ~ :  % --~ ~ to an X-functor ~: % ~ ~ is a natural transformation or 
from the functor ~ to the functor ~3 abiding by the following condition: 

(1.22) The assignment x e Ob ~ ,-. tr(x) ~ Mor ~ is an X-function. 

A natural X-transformation or: ~ ---> ~3 is called a natural X-isomorphism 
provided that tr(x) is an isomorphism for each x e Ob '~, in which ~ and 
~3 are said to be X-equivalent. Given two X-categories q~ and ~ ,  if there 
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exist functors ~: ~ --~ ~ and ~3: 5~ --) % such that q3 o ~ and ~ o ~3 are 
X-equivalent to the identity X-functors I~ and I~, respectively, then % and 
~) are said to be X-equivalent. 

Example 1.4. Let ~ and ~ be X-categories and f :  x ---) y a morphism 
in ~ .  Let p = ~f = f ] .  Then f naturally induces a natural Xp-transformation 
(f)~: (x)~ ~ (y)qg assigning, to each z ~ Ob ~,  (f)qg(z) = f i z z  = z~. �9 

Let ~ be an X-category and (p, ~)  a partial X-diagram in q~ of type 
~$. An X-cone from (p, ~)  is an ordered pair (x, o') of an object x in ~ with 
l[x = x]] = p and a natural Xp-transformation o" from the Xp-functor ~ to the 
Xp-functor (x)~. An X-cone (x, cr) from the partial X-diagram (p, ~)  is called 
an X-colimit of (p, ~)  if it is universal in the sense that for any X-cone 
(y, p) from (p, ~)  there exists a unique morphism f from x to y such that p 
= (f)~ o o-. The notion of an X-cone to (p, ~)  and that of an X-limit of (p, 
~)  can be defined similarly. 

An X-category ~ is said to be X-finitely X-cocomplete if any X-finite 
partial X-diagram in % has an X-colimit in q~. The notion of being smallo- 
X-cocomplete and that of being smalll-X-cocomplete are defined similarly. 
An X-category % is said to be X-finitely X-complete if any X-finite partial 
X-diagram in �9 has an X-limit in ~.  The notion of being smallo-X-complete 
and that of being smaU1-X-complete are defined similarly. 

Example 1.5. The X-category ~%,'~i(X) is small,--X-complete and small,- 
X-cocomplete (i = 0, 1). �9 

With Theorem 7.4.2 of Schubert (1972) and its Booleanization in mind, 
it is easy to see the following result. 

Proposition 1.6. An X-category % is X-finitely X-complete (X-finitely 
X-cocomplete, resp.) iff the category ~[p] is finitely complete (finitely 
cocomplete, resp.) for every p ~ B. �9 

An X-category ~ is called an X-topos if %[p] is a topos for every p 
B. By way of example, ~%,'~d0(X) and ~ff~c~/'bdl(X ) a re  X-toposes. 

An X-functor ~: ~ ~ ~ is said to preserve X-finite X-limits provided 
that, whenever (x, o') is an X-limit of an X-finite partial X-diagram (p, ~d) 
in q~, then (~(x), ~o-) is an X-limit of the partial X-diagram (p, (~Fp) o ~) 
in ~ .  The notion of preserving smallo X-limits and that of preserving small1 
X-limits are defined similarly. Dually, an X-functor ~: ~ ~ ~ is said to 
preserve X-finite X-colimits provided that, whenever (x, o-) is an X-colimit 
of an X-finite partial X-diagram (p, ~d) in ~ ,  then (~(x), ~o-) is an X-colimit 
of the partial X-diagram (p, (~Fp) o ~d) in ~ .  The notion of preserving smallo 
X-colimits and that of preserving smalll X-colimits are defined similarly. As 
in Proposition 1.6, it is easy to see the following result. 
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Proposition 1.7. An X-functor ~: % ---) ~ preserves X-finite X-limits 
(X-finite X-colimits, resp.) iff the functor ~[p]: %[p] ---> 5~[p] preserves 
finite limits (finite colimits, resp.) for every p e B. �9 

Let �9 be an X-finitely X-complete X-category. Then the lump of 
Grp(~[p])'s for all p e B constitute an X-category denoted by ~ / Z ~  (%) 
and called the X-category of groups in ~. Total objects of ~ , , ~  ((~) are 
called total groups in (~. Similarly, the lump of Rng(%[p])'s for all p e B 
constitute an X-category denoted by ~ (~) and called the X-category 
of rings in ~. Total objects of ~ (%) are called total rings in %. Given 
a total ring ~ in qg, the lump of Alg~Fp(%[p])'s for all p e B constitute an 
X-category denoted by ~ #  ~(~) and called the X-category of algebras 
over fit in (~. Similarly, the lump of Lie~fp(~[p])'s for all p e B constitute 
an X-category denoted by ~ ~(%) and called the X-category of Lie 
algebras over fit in ~. 

Example 1.8. The X-category ~ ( ~ % * ~ 0 ( X ) )  is denoted by 
~ a ~  (X). For each p e B, the category ~ r ~  (X)[p] is equivalent to the 
category BRng(Xp). Let ~t be a total object of ~ (X). The X-category 
~M~g__ ~(~%r~d0(X)) is denoted by ~ M ~  ~(X). For each p e B, the category 
~ M ~  ~(X)[p] is equivalent to the category BAlg~fp(Xp). �9 

Let ~;: % ---> ~ be an X-functor of X-finitely X-complete X-categories 
preserving X-finite X-limits. Then it naturally induces X-functors ~m~,~: 
~ r e / z  (q~) ~ ~ n / e  (~)) and ~ , ~  : ~ (~) ---) ~ r ~  (~). 

Example 1.9. Let q~ be a small1 X-category and x e Ob q~. Then the 
assignment y e Ob(%[l[x = x~) ~ (~  = y][, ~x(X, y)) with (~x(X, y) being 
regarded as an X#=y]-setnaturally induces an X#=~l-functor q~x(X, �9 ) from 
~ / l l x  - xll to ~ a l ( X ) / l l x  = xll. �9 

Example 1.10. Let ~t, @ be total objects in ~ r ~  (X). Let/~ ~t ~ 
be a morphism in ~ (X), so that ~ p  can be rated as an algebra over 
~t[p via/~[p in the Boo ~ lean topos BEns0(Xp) for every p e B. The lump 
of base extension functors 

-| : BAlg~ffp(Xp) --> BAlg~[~(Xp) for all p ~ B 

constitute an X-functor from ~ M ~  ~(X) to ~ M ~  ~(X), denoted by - |  
and called the base extension X-functor o f f .  �9 

Example 1.11. Let ~ be a small~ X-category and ~ an X-category. The 
totality of ordered pairs (p, ~;) with p e B and ~ being an Xp-functor from 
the Xe-category % ~p to the X,-category ~ p  can naturally be put down as 
an X-subset of Ob ~%/~dl(X). The totality of ordered pairs (p, ~r) with p e 
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B and o" being a natural Xp-transformation between Xp-functors from the Xp- 
category (~ rp to the Xp-category ~ rp can naturally be put down as an X- 
subset of Mor ~%,-~1(X). They constitute an X-subcategory of ~%*~n(X), 
denoted by ~e~-~L'x(~,  ~). Its total objects are to be identified with X- 
functors from (~ to ~). [] 

Examples 1.10 and 1.11 are combined to yield the following. 

Example 1.12. Given a small~ X-category ~, the assignment 

x E Ob �9 ~ ([Ix = x]], q~x(X, ")) ~ Ob ~ ' x ( ~ ,  ~ , ' ~ l ( X ) )  

naturally induces a contravariant X-functor y from ~ to ~u~.eC~'x((~, 
2B%~I(X)), called the Yoneda embedding. An object of ~l~,z~Z'x(q~, 
~%,'~I(X)) is said to be representable if it is isomorphic to y(x) for some 
object x ~ Ob (~, in which the object of ~ ' x ( ~ ,  ~%/~al(X)) is said 
to be represented by x. [] 

The following is only a Booleanization of Schubert's (1972) Theorems 
7.5.2 and 8.5.1. 

Theorem 1.13. Let % and ~ be X-categories. If ~ is small0-X-complete 
(smallrX-complete, X-finitely X-complete, smallo-X-cocomplete, smallrX- 
cocomplete, X-finitely X-complete, resp.), then so is the X-category 
~ t x ( ( ~ ,  ~). [] 

Example 1.14. Let ~ be a total object of ~ ( X ) .  The X-category 
~ ' x ( ~ M ~ ( X ) ,  2~%,,~aa(X)) is denoted by ~ ' ~ ( X ) ,  which is 
smallrX-complete by Example 1.5 and Theorem 1.13. Therefore we can 
speak of the X-categories ~ / , ~  (~u/w~ '~(X))  and ~ (~u.,w~'~(X)), 
which we denote by ~ ~ E ~ ( X )  and ~ ~ ' ~ ( X )  respectively. The 
identity X-functor on ~ M ~  ~(X) can naturally be rated as an object of 
~ ~ E ~ ( X ) ,  which is denoted by (~x,~. If (~x,~ is regarded as an object 
of ~e~-~/ '~(X) ,  then it is representable, and its representing object is denoted 
by ~[X]. The X-category ~d~ ,x ,~ (~e~ ,w / '~ (X) )  is denoted by 
~ , ~ t ~ ( X ) .  [] 

The following is only a Booleanization of the well-known Yoneda 
lemma, for which the reader is referred, e.g., to MacLane (1971, Chapter 
III, w 

Theorem 1.15. Let % be a small~ X-category, x a total object of %, and 
an X-functor from % to ~%/~(X) .  Then the assignment to each natural 

transformation ~r: ~x(X, ") ---) ~ of or(x)(id(x)) gives rise to a bijective 
correspondence between the natural X-transformations from %x(X, ") to 
and the elements of the underlying set of the X-set ~(x). [] 
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2. RELATIONS BETWEEN TWO BOOLEANIZATIONS 

Let f: X --> Y be an arbitrary morphism in Bloc, which shall be fixed 
throughout this section. As explained in Nishimura (1993, w two functors 
f*: BEnsI(Y) --> BEns1(X) and f , :  BEnsl(X) ---> BEnsl(Y) are canonically 
constructed from the functor f, for which f* q f .  and f* is left exact. For 
each p ~ ~(Y),  f naturally induces a morphism fp: X~(f)(p) --> Yp in Bloc, 
and f* naturally induces a functor f*: BEnsl(Yp) ---> BEnsl(X~(f)(p)). 

The notions of  an X-function, an X-functor, etc., can and should be 
generalized slightly. Let us begin with a generalization of the notion of an 
X-function. An f-function from a Y-set 7 to an X-set ~ is a function/~from 
the underlying set of  7 to that of 0~ satisfying the following conditions: 

(2.1) ~(f)([[x = y]lv) -< [[fix) =/ ' (Y)~x 
(2.2) [[//(x) = f ' ( x ) ] l x  ---< ~(f)([[x = x[[v) 

for all x, y E 7 .  By substituting x for y in (2.1) and taking (2.2) into account, 
we have 

(2.3) [ [ / ix )  =/tx) x = = x]]y) 

for all x e 7 .  
Each f - f u n c t i o n f f r o m  a small! Y-set 7 to a smalln X-set ~ naturally 

gives rise to an X-function ~ * :  f* (7 )  ---> ~ for which it is easy to see the 
following result. 

Proposition 2.1. The above assignment/E ~ / f *  yields a bijective corre- 
spondence between the f-functions from 7 to ~ and the X-functions from 
f * ( 7 )  to ~ .  �9 

Now we introduce a generalization of the notion of an X-functor. An 
f-functor from a Y-category ~ to an X-category % is a functor ~ from the 
underlying category of  ~ to that of ~ satisfying the following condition: 

(2.4) The restriction of ~ to Mor ~ is an f-function. 

Proposition 2.2. The restriction of  an f-functor ~:  ~ --> ~ to Ob ~ is 
also an f-function. 

Proof. Proceed as in the proof of Proposition 1.2. �9 

For each p ~ ~(Y),  an f-functor ~ :  ~ --> ~ naturally gives rise to a 
functor ~[p]:  ~ [p ]  --> %[p] and an f f functor  ~ [p :  ~Fp  --> q~F~(f)(p). An 
f-functor from the opposite Y-category ~op of  a Y-category to an X-category 

is called a contravariant f-functor from ~ to ~ .  
Let �9 be a small~ X-category and ~ a small~ Y-category. Recall that 

the geometric morphism (f,, f*): BEns1(X) --> BEnsl(Y) is open, for which 
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the reader is referred to Nishimura (1993, Theorem 2.13) and MacLane and 
Moerdijk (1992, Chapter IX, w Proposition 2). Since the notion of an X- 
category is a first-order structure in the topos BEns~(X) in the sense of 
MacLane and Moerdijk (1992, Chapter X, w the functor f*: BEnsl(Y) --> 
BEnsl(X) naturally induces a functor f~cat: BCat(Y) ---> BCat(X), where 
BCat(X) and BCat(Y) denote the category of small~ X-categories and X- 
functors and that of small~ Y-categories and Y-functors, respectively. Each 
f-functor ~:  ~ --> % naturally gives rise to an X-functor ~*:  fi~cat(~) --> %, 
for which it is easy to see the following result. 

Proposition 2.3. The assignment to each f-functor ~: ~b ---> ~ of ~* is 
a bijective correspondence between the f-functors from ~ to �9 and the X- 
functors from f~cat(~) to %. [] 

Such a notion as that of preserving X-finite X-limits can be generalized 
easily from X-functors to f-functors, and we can say, by way of example, 
that an f-functor ~: ~b ---> ~ maps Y-finite Y-limits to X-finite X-limits. As 
in Proposition 1.7, we have the following result. 

Proposition 2.4. An f-functor ~: ~b --> ~ maps Y-finite Y-limits (Y- 
finite Y-colimits, resp.) to X-finite X-limits (X-finite X-colimits, resp.) iff 
the functor ~[p]: ~b[p] ---> ~[p] preserves finite limits (finite colimits, resp.) 
for a l lp  ~ ~(Y). [] 

Let ~: ~ ---> % be an f-functor from a Y-finitely Y-complete Y-category 
to a X-finitely X-complete X-category ~ mapping Y-finite limits to X- 

f'mite X-limits. Then ~ naturally gives rise to f-functors ~ :  9~/ ,~ (~) 
---> ~ / e  (~) and ~ a ~ "  ~ ( ~ )  --> ~ (~). 

Example 2.5. The assignments 

(p, ~ )  ~ Ob ~,gg-.,4i(Y ) ~-+ (~(f)(p), ~ ( ~ ) )  ~ Ob ~/~o4 i (X)  

( p , / / )  e Mor ~ % ~ ( Y )  ~ (~(f)(p), ~ ( / / ) )  ~ Mot 9~%/~i(X) 

constitute an f-functor f~%~: ~%/~,.(Y) --+ ~ ,~ . .4 i (X ) (i : 0, 1). [] 

Now we deal with a generalization of the notion of a natural X-transfor- 
mation. Given two f-functors ~ ,  ~ from a Y-category ~ to an X-category 
~, a natural f-transformation from the f-functor ~ to the f-functor q3 is a 
natural transformation r from the functor ~ to the functor ~ satisfying the 
following condition: 

(2.5) The assignment x e Ob ~ ~ o'~ ~ Mor % is an f-function. 

If o-~ is an isomorphism for each x e Ob ~ ,  then o" is called a natural 
f-isomorphism. 
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The following theorem is a kind of Kan theorem. For the general theory 
of Kan constructions, the reader is referred to MacLane (1971, Chapter X). 

Theorem 2.6. Let ~ be a contravariant f-functor from a small! Y-category 
to a small~-X-cocomplete X-category %. Then there is, up to natural f- 

isomorphisms, a unique f-functor ~: ~ u _ . , ~ : y ( ~ ,  ~%n~(Y)) --)% mapping 
small l Y-colimits to small~ X-colimits and making the following diagram com- 
mutative: 

~ e v ( ~ ,  ~ , ~  ~(Y)) 

Proof. Booleanize the argument of MacLane and Moerdijk (1992, Chap- 
ter I, w �9 

Theorem 2.7. Let ~ be an f-functor from a small1 Y-category ~ to a 
small~ X-category (6. Then there is, up to natural f-isomorphisms, a unique 
f-functor 

~7 ~///g~y(~, ~%/~1(Y)) --) ~ez.a~:x(%, ~%,'~al(X)) 

mapping smalll Y-colimits to smalll X-colimits and making the following 
diagram commutative: 

~ , ,~ev(@,  ~ , ~  l(Y)) ~ ) ~ , ~ t x ( ( ~ ,  ~ , ~ J  l(X)) 

,T T, 
Proof. Take ~ : x ( % ,  ~%~l (X) )  for % in the above theorem. �9 

Theorem 2.8. In the above theorem, if we assume also that ~ is Y- 
finitely Y-cocomplete and that ~ maps Y-finite Y-colimits to X-finite X- 
colimits, then o~ maps Y-finite Y-limits to X-finite X-limits. 

Proof. Booleanize the proof of Theorem 17.1.6(e) of Schubert (1972). m 

Let ~t be a total object of ~ L ~  (X), ~ a total object of ~ (Y), 
and/#. �9 f ~ , ~  (~) ---) ~t a total morphism of ~ (X), which shall be fixed 
throughout the rest of this section. Since the functor f ~ , ,  1: ~ % / ~ ( Y )  ---) 
~%,,~at(X) maps Y-finite Y-limits to X-finite X-limits, it naturally induces 
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an f-functor f ~ : :  ~ ( Y )  --> ~ : z g  (X). Similarly, the f-functor 
f ~ , ~ :  ~ t , , ~  (Y) --> ~ p ~  (X) naturally induces an f-functor 

f ~ # :  ~ M ~  ~(Y) --> ~ M #  f&~: <~)(X) 

The morphism~: f ~ ( ~ )  --> ~t makes ~ an object of 

~ f~e<~)(X), 
which naturally induces a base extension f-functor 

--~f~:~ (~)~: ~ S ~  f~fe~ (~)(X) ---> ~ , ~  ~(X) 

We denote by f~a# the composition 

-I (-| o f~ 
for which we have the following result. 

Proposition 2.9. The f-functor f~a4:  ~ M ~  ~(Y) ---) ~ M ~  ~(X) maps 
Y-finite Y-colimits to X-finite X-colimits. 

Proof It is sufficient to note that the f-functor f ~ 4  maps Y-finite Y- 
colimits to X-finite X-colimits and that the X-functor 

- X f&~,.~ (~)o-j{ 

preserves X-finite X-colimits. �9 

By Theorem 2.7 there exists, up to natural f-isomorphisms, a unique 
f-functor 

f~: ~:~(Y) ---> ~,,~/~(X) 

mapping Y-colimits to X-colimits and making the following diagram commu- 
tative: 

~3ff~,~t~(Y) ~,,~t ) ~o~:~(X) 

yT T' 
~M~ ~(Y) ) ~M/: ~(X) 

Proposition 2.10. The f-functor 
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maps Y-finite Y-limits. 

Proof. This follows from Theorem 2.8 and Poropsition 2.9. I 

Example 2.11. Since the f-functor 

f ~ :  ~ e ~ w / ~ ( Y )  --> ~ e ~ f ~ ' ~ ( X )  

maps Y-finite Y-limits to X-finite X-limits by Proposition 2.10, it naturally 
gives rise to f-functors 

f ~ , . ~ e  = ( f ~ , , ~ e ) ~ , , :  ~ e ~ - w l ~ ( Y )  --> ~ f ~ t ~ ( X )  

f ~ t  = (f~,,~e)~a,~: ~ t~ez ,wt~(Y)  --> ~ , w / ~ ( X )  �9 

Example 2.12. The Y-functors ~v,~ (X-functor ~x,~, resp.) is represented 
by ~[X] (~[X], resp.). Since f~a~(~[X]) can naturally be identified with 
~[X], f~,,.~,.((Yv,~) can naturally be identified with ~x,,t. Therefore the f- 
functor f ~ t  naturally gives rise to an f-functor 

f ~ e ~ :  ~ e ~ , w ~ ' ~ ( Y )  --> ~ u , , w z ' ~ ( X )  �9 

3. QUANTIZATION 

Let us begin this section by introducing a category to be denoted by 
BCat. Its objects are all pairs (X, ~)  of a Boolean locale X and a smalll X- 
category ~.  A morphism from (X, ~) to (Y, ~ )  in Bea t  is a pair (f, ~)  of 
a morphism f: X ---> Y in Bloc and an f-functor ~: ~ --> ~. The composition 
(g, ~) o (f, ~)  of morphisms (f, ~): (X, ~)  --> (Y, ~ )  and (g, ~): (Y, ~ )  --> 
(Z, ~) in BCat is defined to be (g o f, ~ o ~). The category BCat has smallo 
coproducts. By way of example, given objects (X, ~)  and (Y, ~ )  in BCat, 
their canonical coproduct in Bea t  is (X �9 Y, ~ �9 ~),  where: 

(3.1) O b ( ~ G ~ ) )  = {(x,Y)l x ~ O b ~  andy e O b g } .  
(3.2) [(x, y) = (x', Y')Dxev = d[x = X'Dx, ~y = Y']v) for all (x, y), 

(x' ,y')  ~ Ob(% G ~). 
(3.3) M o r ( ~ @ ~ )  = {(f ,g) l f  ~ M o r % a n d g  ~ Mor~} .  
(3.4) [[(f, g) = (f ' ,  g ')]xev = (~f = f']lx, ~g = g']v) for all (f, g), 

(f ' ,  g') e Ob (~ G ~). 
(3.5) de@o~((f, g)) -- (de(f), d~(g)) for all (f, g) ~ Mor (~ �9 9).  
(3.6) r e~( ( f ,  g)) = (re(f), r~(g)) for all (f, g) ~ Mor (~ �9 ~). 
(3.7) ide.~((x, y)) = 0de(x), ida(y)) for all (x, y) E Ob (~ G 9).  
(3.8) ( f ' ,  g') oe@~ (f, g) = ( f '  oe f, g' o~ g) for all 

((f ' ,  g'), (f, g)) E Mor (~ ~3 9 )  Xob( e ~  ) Mor (~ @ ~)  

It is easy to see that the category BCat can be put down as an orthogonal 



The Logical Quantization of Algebraic Groups 671 

category with respect to it small0 coproduct diagrams for its orthogonal sum 
diagrams. The assignments (X, ~)  �9 Ob BCat ~ X ~ Ob BLoc and (f, ~)  
�9 Mor BCat ~ f �9 Mor BLoc constitute a functor to be denoted by 0BLoc. 

We now introduce a category to be denoted by BObj. Its objects are 
all triples (X, <~, ~ ) such that (X, ~)  �9 Ob BCat and ~ is a total object of 
the X-category ~. Its morphisms from (X, ~,  a: ) to (Y, ~ ,  y ) in BObj are 
all triples (f, ~ , /~ )  such that (f, ~)  is a morphism from (X, ~)  to (Y, ~)  in 
BCat and / / i s  a total morphism from ~ ( y  ) to ~ in the X-category ~. The 
composition (g, ~ , ~ )  o (f, ~ , / / )  of (f, ~ , /~) :  (X, ~, a:) ---> (Y, ~ , ~ )  and 
(g, ~, ~ ): (Y, ~ ,  ~ ) --> (Z, ~,/~ ) in BObj is defined to be (g 0 f, ~ (3 ~3, 

/ d o  ~ ( ~  )). It is easy to see that the category BObj has small0 coproducts. 
The category BObj can be regarded as an orthogonal category with respect 
to its small0 coproduct diagrams for its orthogonal sum diagrams. The assign- 
ments 

(X, %, ~ )  �9 Ob BObj ~ (X, q~) �9 Ob BCat  

(f, ~ , / r  E Mor BObj ~ (f, ~)  �9 Mor BCat 

constitute a functor from the category BObj to the category BCat to be 
denoted by 0Beat. 

Let ~ be a manual of Boolean locales, which shall be fixed throughout 
the rest of this section. An empirical framework over ~ is a functor qb from 

to BCat satisfying the following conditions: 

(3.9) It maps orthogonal N-sum diagrams to orthogonal sum dia- 
grams in BCat. 

(3.10) 0BLoc O 4~ is the identity functor of ~ into BLoc. 

Example 3.1. The assignments X e Ob 9~2 ~ (X, ~%z~/(X)) and f e 
Mot ~1)~ ~ (f, f~%~i) constitute an empirical framework over ~ to be denoted 
by ~@rt~i (i = 0, 1). m 

Example 3.2. The assignments X �9 Oh ~ ~ (X, ~ , ~  (X)) and f �9 
Mor ~ ~ (f, f ~ )  constitute an empirical framework over ~ to be denoted 
by ~ n ~ .  �9 

For an empirical framework qb over ~ ,  we denote by qb~,~t(-) the 
function with the same domain of ~ ( - )  such that ~(X) = (X, qb%~(X)) for 
each X �9 Ob ~92 and ~(f) = (f, d~%~t(f) ) for each f �9 Mor ~J)~. 

Given an empirical framework qb over ~ ,  we now introduce a category 
to be denoted by EObj(qb). Its objects are all functors ~ from ~ to BObj 
abiding by the following conditions: 

(3.11) It maps orthogonal ~)~-sum diagrams in ~ to orthogonal sum 
diagrams in BObj. 

(3.12) 0BCa t O ~ = (I). 
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Given such a functor 3: 9J~ --> BObj ,  we denote by 3 ~  the function 
with the same domain of 3 such that the value of 3 ~ . ( ' )  is the third 
component of the triple 3(" ). 

Given such objects 3, @ in EObj (*), the morphisms from 3 to @ in 
EObj  (~)  are all assignments cx to each X ~ Ob ~32 of a total morphism Ctx: 
3c# (X)  ---> (~ ,#(X)  satisfying the following condition: 

(3.13) The diagram 

~,(f)(3~(Y)) 3er ) 3~(X) 

,~(l')(~xu ~x x 
�9 ~,,(t')(@~(Y)) > @~(x) @~(t) 

is commutative for every f: X --~ Y ~ Mor ~J~. 
As is expected, the composition [3 o cx of morphisms et: 3 --> ~ and 

[3: @ --~ ~ in EObj  (dp) is defined to be the assignment X E Ob ~0~ ~ [3x 
o tx x. 

The following example is substantially the principal object of our previ- 
ous research (Nishimura, 1995b). 

Example 3.3. Let i be 0 or 1. The objects of the category EObj  (23~ndi) 
are called empirical smalli sets over 9)~. The category EObj  (~3~rtdi) is 
called the category of empirical small/sets over s)32. [] 

Example 3.4. The objects of the category EObj  (~3 tng)  are called 
empirical rings over ~[l~. The category is called the category of empirical 
rings over 9)2. [] 

Example 3.5. Let 31 be an empirical ring over ~r The assignments 
X ~ Ob ~ ~ (X, ~M~,~cx))  and f E Mor ~J~ ~ (f, f~,a~) constitute an 
empirical framework over ~ to be denoted by ~9~[g~. The objects of the 
category EObj  (~9~[g~) are called empirical ~R-algebras over ~t)~, and the 
category is called the category of empirical ~-algebras over ~J)2. [] 

Example 3.6. Let ~ be an empirical ring over ~9~. The assignments 
X E Ob ~ ~ (X, ~ , w ~ ' ~ ( x ) )  and f ~ Mot  ~ff~ ~ (f, f ~ t . . ~ ( t Q  constitute 
an empirical framework over ~J~ to be denoted by ~3ttrtcf!n. The objects of 
the category EObj  (~3ttrtcf.~lt) are called empirical ~-functors over ~JJ~, and 
the category is called the category of empirical ~-functors over ~ .  [] 

Example 3. 7. Let ~ be an empirical ring over ~)2. The assignments 

X ~ Ob ~ ~ (X, ~ , z ~ ' ~ , # ( x ) ( X ) )  
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and 

f e Mor ~ ~ (f, f ~ . ~ : )  

constitute an empirical framework over s~ to be denoted by ~@~ttrtcf~t. 
The objects of the category EObj(~63~tmct!~) are called empirical ~-group- 
functors over 93~, and the category is called the category of empirical 3]- 
group-functors over ~J)2. [] 

Example 3.8. Let 3~ be an empirical ring over ~r32. The assignments 

and 

X ~ Ob ~ ~ (X, ~ t ~ : , . ~ , # ~ x ) ( X ) )  

f ~ Mor ~0~ ~ (f, f~*z,~.~:)  

constitute an empirical framework offr 9J~ to be denoted by ~9]~ttnct;~t. The 
objects of the category EObj (~ l . t r t c f !~ i )  are called empirical ~-ring- 
functors over ~J)2, and the category is called the category of empirical 9~- 
ring-functors over ~ .  [] 

Example 3.9. Let ~ be an empirical ring over ~J~. The assignments 

and 

X ~ Ob ~ ~ (X, 9 ~ / : ) t , # < x ) ( X ) )  

f c Mor s)~ ~ (f, f ~ : )  

constitute an empirical framework over ~ to be denoted by 23~ttrtct:~. 
The objects of the category EObj (23~3~Lmct,a) are called empirical ,~-Lie- 
functors over ~ ,  and the category is called the category of empirical ~-Lie-  
functors over s2~. [] 

4. A P P E N D I X  

Let X be a Boolean locale with B = @(X), which shall be fixed through- 
out this appendix. It is well known that the topos BEnsi(X) enjoys all of 
classical mathematics (i = O, 1). The purpose of this appendix is to show 
that the X-topos ~%,,~ (X) also enjoys all of classical mathematics (i = 0, 
1), which is the very basis of our Booleanization in Section 1. Here we 
handle only ~%,e~(X), leaving a similar treatment of ~%,'~0(X) to the reader. 

Let us begin this section with a brief review of the construction of the 
Boolean valued universe V ~E) of the Zermelo-Fraenkel set theory ZFC with 
the axiom of choice. For ZFC the reader is referred to a standard textbook 
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on set theory such as Jech (1978). We define V~) by transfinite induction 
on the ordinal number o~ in V as follows: 

(4.1) V(o m = O. 
(4.2) V~ ) = {ulu: ~(e~) ~ B and ~(u)  C U~<~ v~B)}. 

Then the Boolean valued universe V (m of Scott and Solovay is defined 
as follows: 

(4.3) V (B) = U,,~o,(v) V~ ) 

where On(V) is the class of all ordinal numbers in V. The class V (R) can be 
put down as a Boolean valued model of ZFC by defining [u e v] and 
11u = v]] for u, v E V (m with simultaneous induction 

(4.4) [u e v~ = SUpy~(v)(v(y) A 11U = y~) 
(4.5) [U = V] = infx~(.)(u(x) ---> Ix E v]) ^ infy~(v)(v(y) --> [y E u]) 

and by assigning [[q~] e B to each formula q~ without free variables inductively 
as follows: 

(4.6) [7q0~ = ][q~. 
(4.7) [q)l V ~2~ = [q)l~ V [q)2[" 
(4.8) 119o, ̂  q~2]] = [[9ol]1 ̂  [[q%]]. 
(4.9) 11Vxgo(x)]] = inf~r 
(4.10) 113xtp(x)] = SUpu~r 

Every theorem of standard mathematics, no matter what branch it belongs 
to, can be regarded in principle as a theorem of ZFC. The following far- 
famed theorem gives a powerful transfer principle from standard mathematics 
to Boolean mathematics. 

Theorem 4.1. If r is a theorem of ZFC, then so is [tp11 = lB. [] 

The universe V can be embedded into V (B) by transfinite induction 
as follows: 

(4.11) 3~= {(2,1)Ix ~ y } f o r y  e V. 

Proposition 4.2. For x, y e V, we have 

IB if x e y  
(1) [2 e 3~11 = 0B otherwise 

{1~ if x = y 
(2) 112" = 3~1] = OB otherwise 
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The Boolean universe V ~R) can be regarded as a category whose objects 
are all elements of V (B) and whose morphisms are all functions in V (B). We 
are going to show that the categories V ~B) and BEns~(X) are equivalent. 

Given u e V ~), we are going to build its associated smalll X-set tZ 
Each p ~ B determines an equivalence relation - p  on V(B)[p, U] = {V E 
v(a)ll[v ~ u] >-p}  as follows: 

(4.12) v = p w i f f [ [ v  = w]l-->p. 

For each v ~ v(a)[p, u] we write [V]p for the equivalence class of v with 
respect to the equivalence relation ---p. The underlying set of a shall consist 
of [V]p'S for all p e B and all v e V(H)[p, u]. This a can be looked on as an 
X-set with respect to 

(4.13) ~[[V]p = [W]q]] a = [Iv = w] ^ p ^ q for any Iv]p, [W]q E a. 

Every function f :  u ~ v in V (B) naturally induces an X-function j~: a 
P as follows: 

(4.14) j~([W]p) = [f(W)]p for any [W]p e tl. 

Conversely, given a smalll X-set ~ ,  we will construct its associated 
element ~ of V (a). First we define an element ~ of V (B) as follows: 

(4.15) �9 = {(~, [Ix = x]])lx ~ ~ } .  

It is not difficult to see that --~ = {((x, y)", [Ix = y])Ix, y ~ ~}  is an 
equivalence relation on ~ in V (B). The quotient set of ~ with respect to this 
equivalence relation in V (B) is denoted by ~. 

Given a small~ X-function~." ~ ---) ~ ,  we will construct its associated 
funct ion/ ; '  from ~ to ~ in V (B). First we define a function ~." ~ ~ ~ in 
V (B) as follows: 

(4.16) / Z =  {((x,/~x))", [Ix = x])[x E ~ } .  

Since the function/7'respects the equivalence relations ~at and ~ v  in V (a), 
it naturally brings forth a function ~." ~ ---) T" in V (s). 

The above considerations give rise to two functors 1%: V (a) ~ BEns~(X) 
and Gv: BEnsl(X) ~ V (B). The first functor assigns ~ to each object u of 
V (~) and j~ to each function f in V (B). The second functor assigns 0~ to each 
smalll X-set ~ and/~to  each X-func t ion / lo f  small1 X-sets. Now it is easy 
to see the following result. 

Theorem 4.3. The categories V (m and BEnsl(X) are equivalent. 

Proo f  It is not difficult to see that the functor 1% is an equivalence of 
categories with a quasi-inverse Gv. The details are entrusted to the dexter- 
ous reader. [] 
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By admitting sets of partial existence and using the existential predicate 
E, we are forced to transform ZFC into ZFCE. For the metaphysical back- 
ground of sets of partial existence, the reader is referred to Scott (1979). The 
formal system ZFCE can be obtained from Takeuti and Titani's (1981) ZF~ 
simply by changing the underlying logic from intuitionistic to classical and 
adding an adequate formulation of the axiom of choice. Due modifications 
in the construction of V ~n) will give rise to a model V l a /o f  ZFC E. As in the 
construction of V ~n), we define V~ aj by transfinite induction on ordinal number 
ct in V as follows: 

(4.17) VI0 BI = Q. 
(4.18) V~ nl = {(p, u)lu: ~(u)  --> B, ~(u)  C t3~<~ V~ BI and u((q, v)) 

p ^ q for any (q, v) E ~(u)}. 

The Boolean valued universe V lnl is defined as follows: 

(4.19) V lal = t_J~onw) V~ B/. 

The class V IB1 can be put down as a Boolean valued model of ZFCe by 
defining [[(p, u) e (q, v)]], ~(p, u) = (q, v)~, and ~E(p, u)]] for (p, u), (q, v) 

V fSI with simultaneous induction as follows: 

(4.20) ~(p, u) E (q, v)] = SUpy~)(v(y) ^ ~(p, u) = y]]). 
(4.21) [[(p, u) = (q, v)] = i n f ~ , ) ( u ( x )  --> ~x ~ (q, v)]) ^ infy~v)(V(y) 

---) ~y E (p, u)]) ^ (p ~ q). 
(4.22) ~E(p, u)] = p. 

We assign ~]] ~ B to each formula ~p without free variables inductively 
as follows: 

(4.23) [[~q~ = ~q~]]. 
(4.24) ~q)l V q)2~ ~" ~q)l~ V [q~2~. 
( 4 . 2 5 )  ^ = ^ 

(4.26) [Vxq~(x)] = inf,~vla~(~Ex] --> [[q~(x)]). 
(4.27) ~3xq~(x)~ = SUpx~v~n~(~Ex] ̂  [[q~(x)]). 

The Boolean universe V IBI can be regarded as an X-category whose 
objects are all elements of V c~l and whose morphisms are all functions in 
V ~BI. Here, two elements x and y of V IB/ are identified provided that ~Ex] 
= [[Eyn = ~x = y], and a function means an entity f i n  V In/such that ~f: x 
---) y] = ~Ef] = ~Ex]] = [[Ey] for some elements x, y ~ V IBI. A discussion 
similar to that leading to Theorem 4.3 gives the following result. 

Theorem 4.4. The X-categories V IBI and ~%,,~l(X) are X-equivalent. �9 

Its technical details are safely left to the sagacious reader. 
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